2.105. Wyznacz wartości (o ile istnieją) funkcji f: największą (M) i najmniejsza (m) podanym zbiorze: w f(x)= 1-x^ 2 x-3 ,x in langle-5,3) f(x) = 1/(x ^ 2 – 4) langle1,2) a) f(x)= x^ 2 4+x ,x in langle-10,-5 rangle cup langle-3,5 rangle b) f(x) = (10x)/(x ^ 2 + 1) =(0,10) x in10 d) 2) cup(2, (2, 3)

2.105. Wyznacz wartości (o ile istnieją) funkcji f: największą (M) i najmniejsza (m) podanym zbiorze: w f(x)= 1-x^ 2 x-3 ,x in langle-5,3) f(x) = 1/(x ^ 2 – 4) langle1,2) a) f(x)= x^ 2 4+x ,x in langle-10,-5 rangle cup langle-3,5 rangle b) f(x) = (10x)/(x ^ 2 + 1) =(0,10) x in10 d) 2) cup(2, (2, 3)

Kliknij aby dołączyć do Akademii Matematyki

Dodaj komentarz