Zbiór M tworzą wszystkie liczby naturalne dwucyfrowe, w zapisie których występują dwie różne cyfry spośród: 1,2,3,4,5. Ze zbioru M losujemy jedną liczbę, przy czym każda liczba z tego zbioru może być wylosowana z tym samym prawdopodobieństwem. Oblicz prawdopodobieństwo, że wylosujemy liczbę większą od 20, w której cyfra dziesiątek jest mniejsza od cyfry jedności.

Zbiór M tworzą wszystkie liczby naturalne dwucyfrowe, w zapisie których występują dwie różne cyfry spośród: 1,2,3,4,5. Ze zbioru M losujemy jedną liczbę, przy czym każda liczba z tego zbioru może być wylosowana z tym samym prawdopodobieństwem. Oblicz prawdopodobieństwo, że wylosujemy liczbę większą od 20, w której cyfra dziesiątek jest mniejsza od cyfry jedności.

Chcę dostęp do Akademii!

Podstawą ostrosłupa prawidłowego jest kwadrat. Wysokość ściany bocznej tego ostrosłupa jest równa 22, a tangens kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy jest równy 46–√5. Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa prawidłowego jest kwadrat. Wysokość ściany bocznej tego ostrosłupa jest równa 22, a tangens kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy jest równy 46–√5. Oblicz objętość tego ostrosłupa.

Chcę dostęp do Akademii!

Miasta A i B są oddalone o 450 km. Pani Danuta pokonała tę trasę swym samochodem w czasie o 75 minut dłuższym niż pani Lidia. Wartość średniej prędkości, z jaką jechała pani Danuta na całej trasie, była o 18 km/h mniejsza od wartości średniej prędkości, z jaką jechała pani Lidia. Oblicz średnie wartości: prędkości, z jaką pani Danuta jechała z A do B prędkości, z jaką pani Lidia jechała z A do B

Miasta A i B są oddalone o 450 km. Pani Danuta pokonała tę trasę swym samochodem w czasie o 75 minut dłuższym niż pani Lidia. Wartość średniej prędkości, z jaką jechała pani Danuta na całej trasie, była o 18 km/h mniejsza od wartości średniej prędkości, z jaką jechała pani Lidia. Oblicz średnie wartości:

  • prędkości, z jaką pani Danuta jechała z A do B
  • prędkości, z jaką pani Lidia jechała z A do B

Chcę dostęp do Akademii!

Dany jest trójkąt ABC, w którym |AC|>|BC|. Na bokach AC i BC tego trójkąta obrano odpowiednio punkty D i E, że zachodzi równość |CD|=|CE| . Proste AB i DE przecinają się w punkcie F (zobacz rysunek). Wykaż, że |∢BAC|=|∢ABC|−2⋅|∢AFD|.

Dany jest trójkąt ABC, w którym |AC|>|BC|. Na bokach AC i BC tego trójkąta obrano odpowiednio punkty D i E, że zachodzi równość |CD|=|CE| . Proste AB i DE przecinają się w punkcie F (zobacz rysunek).
Wykaż, że |∢BAC|=|∢ABC|−2⋅|∢AFD|.

Chcę dostęp do Akademii!