Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.

Chcę dostęp do Akademii!

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt równoboczny ABC. Wysokość SO tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa 27. Oblicz pole powierzchni bocznej ostrosłupa ABCS oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa.

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt równoboczny ABC. Wysokość SO tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa 27. Oblicz pole powierzchni bocznej ostrosłupa ABCS oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa.

Chcę dostęp do Akademii!

Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem R=logAA0, gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A0=10−4 cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 6,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii i rozstrzygnij, czy jest ona większa, czy – mniejsza od 100 cm.

Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem R=logAA0, gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A0=10−4 cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 6,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii i rozstrzygnij, czy jest ona większa, czy – mniejsza od 100 cm.

Chcę dostęp do Akademii!

Dany jest trójkąt prostokątny ABC. Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G. Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że |∢DEC|=|∢BGF|=90∘ (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta FBG.

Dany jest trójkąt prostokątny ABC. Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G. Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że |∢DEC|=|∢BGF|=90∘ (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta FBG.

Chcę dostęp do Akademii!

W tabeli przedstawiono roczne przyrosty wysokości pewnej sosny w ciągu sześciu kolejnych lat. kolejne lata 1 2 3 4 5 6 przyrost (w cm) 10 10 7 8 8 7 Oblicz średni roczny przyrost wysokości tej sosny w badanym okresie sześciu lat. Otrzymany wynik zaokrąglij do 1 cm. Oblicz błąd względny otrzymanego przybliżenia. Podaj ten błąd w procentach.

W tabeli przedstawiono roczne przyrosty wysokości pewnej sosny w ciągu sześciu kolejnych lat. kolejne lata 1 2 3 4 5 6 przyrost (w cm) 10 10 7 8 8 7 Oblicz średni roczny przyrost wysokości tej sosny w badanym okresie sześciu lat. Otrzymany wynik zaokrąglij do 1 cm. Oblicz błąd względny otrzymanego przybliżenia. Podaj ten błąd w procentach.

Chcę dostęp do Akademii!

Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt α o mierze A.30∘ B.45∘ C.60∘ D.75∘

Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt α o mierze A.30∘ B.45∘ C.60∘ D.75∘

Chcę dostęp do Akademii!

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie P przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek).Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności P, jest równe A.14 B.233−−√ C.433−−√ D.12

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie P przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek).Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności P, jest równe A.14 B.233−−√ C.433−−√ D.12

Chcę dostęp do Akademii!

W okręgu o środku w punkcie S poprowadzono cięciwę AB, która utworzyła z promieniem AS kąt o mierze 31∘ (zobacz rysunek). Promień tego okręgu ma długość 10.Odległość punktu S od cięciwy AB jest liczbą z przedziału A.⟨92;112⟩ B.(112;132⟩ C.(132;192⟩ D.(192;372⟩

W okręgu o środku w punkcie S poprowadzono cięciwę AB, która utworzyła z promieniem AS kąt o mierze 31∘ (zobacz rysunek). Promień tego okręgu ma długość 10.Odległość punktu S od cięciwy AB jest liczbą z przedziału A.⟨92;112⟩ B.(112;132⟩ C.(132;192⟩ D.(192;372⟩

Chcę dostęp do Akademii!

Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej f. Wierzchołkiem tej paraboli jest punkt W=(1,9). Liczby −2 i 4 to miejsca zerowe funkcji f.Zbiorem wartości funkcji f jest przedział A.(−∞;−2⟩ B.⟨−2;4⟩ C.⟨4;+∞) D.(−∞;9⟩

Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej f. Wierzchołkiem tej paraboli jest punkt W=(1,9). Liczby −2 i 4 to miejsca zerowe funkcji f.Zbiorem wartości funkcji f jest przedział A.(−∞;−2⟩ B.⟨−2;4⟩ C.⟨4;+∞) D.(−∞;9⟩

Chcę dostęp do Akademii!