...

Matura maj 2017 zadanie 28 Dane są dwa okręgi o środkach w punktach P i R, styczne zewnętrznie w punkcie C. Prosta AB jest styczna do obu okręgów odpowiednio w punktach A i B oraz |∢APC|=α i |∢ABC|=β (zobacz rysunek). Wykaż, że α=180°−2β.

Dane są dwa okręgi o środkach w punktach P i R, styczne zewnętrznie w punkcie C. Prosta AB jest styczna do obu okręgów odpowiednio w punktach A i B oraz |∢APC|=α i |∢ABC|=β (zobacz rysunek). Wykaż, że α=180°−2β.

Zobacz!

Matura maj 2017 zadanie 32 Dane są punkty A=(−4,0) i M=(2,9) oraz prosta k o równaniu y=−2x+10. Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM. Oblicz pole trójkąta ABC.

Dane są punkty A=(−4,0) i M=(2,9) oraz prosta k o równaniu y=−2x+10. Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM. Oblicz pole trójkąta ABC.

Zobacz!

Matura maj 2017 zadanie 33 Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Wynik podaj w postaci ułamka zwykłego nieskracalnego.

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Wynik podaj w postaci ułamka zwykłego nieskracalnego.

Zobacz!

Matura maj 2017 zadanie 34 W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa 5√3/4, a pole powierzchni bocznej tego ostrosłupa jest równe 15√3/4. Oblicz objętość tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa 5√3/4, a pole powierzchni bocznej tego ostrosłupa jest równe 15√3/4. Oblicz objętość tego ostrosłupa.

Zobacz!

Matura maj 2017 zadanie 4 Liczba osobników pewnego zagrożonego wyginięciem gatunku zwierząt wzrosła w stosunku do liczby tych zwierząt z 31 grudnia 2011 r. o 120% i obecnie jest równa 8910. Ile zwierząt liczyła populacja tego gatunku w ostatnim dniu 2011 roku?

Liczba osobników pewnego zagrożonego wyginięciem gatunku zwierząt wzrosła w stosunku do liczby tych zwierząt z 31 grudnia 2011 r. o 120% i obecnie jest równa 8910. Ile zwierząt liczyła populacja tego gatunku w ostatnim dniu 2011 roku?

Zobacz!